[1] 董建明,傅利民,饶培伦. 人机交互:以用户为中心的设计和评估[M]. 第4版. 北京:清华大学出版社, 2013.
[2] 程时伟,沈哓权,孙凌云,等. 多用户眼动跟踪数据的可视化共享与协同交互[J]. 软件学报, 2019,30(10):3037-3053.
[3] HANSEN D W, JI Q. In the eye of the beholder: A survey of models for eyes and gaze[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010,32(3):478-500.
[4] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012:1097-1105.
[5] 胡大正. 自然光下基于单目摄像头的视线跟踪算法研究[D]. 广州:华南理工大学, 2016.
[6] WOJCIECHOWSKI A, FORNALCZYK K. Single web camera robust interactive eye-gaze tracking method[J]. Bulletin of the Polish Academy of Sciences:Technical Sciences, 2015,63(4):879-886.
[7] 温晴川,达飞鹏,方旭. 基于双目立体视觉的视线跟踪系统标定[J]. 光学学报, 2012,32(10):152-162.
[8] BALTRUSAITIS T, ROBINSON P, MORENCY L P. Constrained local neural fields for robust facial landmark detection in the wild[C]// IEEE International Conference on Computer Vision Workshops. 2013:354-361.
[9] LU F, OKABE T, SUGANO Y, et al. Learning gaze biases with head motion for head pose-free gaze estimation[J]. Image and Vision Computing, 2014,32(3):169-179.
[10]WOOD E, MORENCY L P, ROBINSON P, et al. Learning an appearance-based gaze estimator from one million synthesised images[C]// Proceedings of the 9th Biennial ACM Symposium on Eye Tracking Research & Applications. 2016:131-138.
[11]刘俊. 基于眼动跟踪的隐式相关反馈方法研究[D]. 北京:北京交通大学, 2014.
[12]胡晓红,王红,任衍具. 基于眼动技术的互联网广告效果研究[J]. 计算机应用研究, 2018,35(5):1345-1349.
[13]杨佩军. 众包数据标注质量的改善算法研究[D]. 上海: 华东师范大学, 2019.
[14]MELISSA L V, HENDERSON J M. Object-scene inconsistencies do not capture gaze: Evidence from the flash-preview moving-window paradigm[J]. Attention Perception & Psychophysics, 2011,73(6):1742-1753.
[15]王林,李斌. 头部可自由运动的头戴式视线跟踪系统设计[J]. 计算机应用与软件, 2015,32(7):163-166.
[16]纪超,黄新波,曹雯,等. 改进的Fast-CNN模型在绝缘子特征检测中的研究[J]. 计算机与现代化, 2019,(4):59-64.
[17]ZHANG X C, SUGANO Y, FRITZ M, et al. MPIIGaze: Real-world dataset and deep appearance-based gaze estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019,41(1):162-175.
[18]郭克友,马丽萍,胡巍. 基于DCNN的人脸特征点检测及面部朝向计算[J]. 计算机工程与应用, 2020,56(4):202-208.
[19]郝运河,张浩峰. 基于双支持向量回归机的增量学习算法[J]. 计算机科学, 2016,43(2):230-234.
[20]葛芸,江顺亮,叶发茂,等. 基于ImageNet预训练卷积神经网络的遥感图像检索[J]. 武汉大学学报(信息科学版), 2018,43(1):67-73.
[21]RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015,115(3):211-252.
[22]HUANG Q, VEERARAGHAVAN A, SABHARWAL A. TabletGaze: Dataset and analysis for unconstrained appearance-based gaze estimation in mobile tablets[J]. Machine Vision & Applications, 2017,28(5-6):445-461.
[23]何春燕. 基于卷积神经网络的车行环境多类障碍物检测与识别[D]. 重庆:重庆邮电大学, 2017.
|