[1] ANDERSON C W, STOLZ E A, SHAMSUNDER S. Multivariate auto regressive models for classification of spontaneous electro encephalographic signals during mental tasks[J]. IEEE Transactions on Biomed Engineering, 1998,45(3):277-286.
[2] 赵建林,周卫东,刘凯,等. 基于SVM和小波分析的脑电信号分类方法[J]. 计算机应用与软件, 2011,28(5):114-116.
[3] 徐宝国,宋爱国. 基于小波包变换和聚类分析的脑电信号识别方法[J]. 仪器仪表学报, 2009,30(1):25-28.
[4] ANH P K, CASTRO L P, THAO P T, et al. New sampling theorem and multiplicative filtering in the FRFT domain[J]. Signal, Image and Video Processing, 2019,13(5):951-958.
[5] QIU F C, LIU Z H, LIU R L. Fluid flow signals processing based on fractional Fourier transform in a stirred tank reactor[J]. ISA Transactions, 2019,22(4):268-277.
[6] BALEANU D, ALQURASHI M. One dimensional fractional frequency Fourier transform by inverse difference operator[J]. Advances in Difference Equations, 2019,19(1):1-10.
[7] 柯海森,双嘉伟. 基于ELM运动想象脑电信号的分类[J]. 计算机应用与软件, 2016,33(10):187-206.
[8] BURKE D P, KELLY S P, DE CHAZAL P, et al. A parametric feature extraction and classification strategy for brain-computer interfacing[J]. IEEE Transactions on Neural System Rehabilitation Engineering, 2005,13(1):12-17.
[9] HSU W Y. Embedded prediction in feature extraction: Application to single-trial EEG discrimination[J]. Clinal EEG and Neurosci, 2013,44(1):31-38.
[10] WU T, YANG G Z, YANG B H, et al. EEG feature extraction based on wavelet packet decomposition for brain computer interface[J]. Measurement, 2008,41(6):618-625.
[11]WANG Y R, LI XIN, LI H H, et al. Feature extraction of motor imagery electroencephalography based on time frequency-space domains[J]. Journal of Biomedical Engineering, 2014,31(5):955-961.
[12]程龙龙,明东,刘双迟,等. 脑机接口研究中想象动作电位的特征提取与分类算法[J]. 仪器仪表学报, 2008,29(8):1773-1778.
[13]徐宝国,宋爱国,费树岷. 在线脑机接口中脑电信号的特征提取与分类方法[J]. 电子学报, 2011,39(5):1025-1030.
[14]王登,苗夺谦,王睿智. 一种新的基于小波包分解的EEG特征抽取与识别方法研究[J]. 电子学报, 2013,41(1):193-198.
[15]于路,薄华. 基于改进EMD的运动想象脑电信号识别算法研究[J]. 微型机与应用, 2016,35(9):58-63.
[16]王宏,赵海滨,刘冲. 采用小波熵和频带能量提取脑电信号特征[J]. 吉林大学学报(工学版), 2011,41(3):828-831.
[17]陈景霞,王艳丽,贾小云,等. 基于深度卷积神经网络的脑电信号情感识别[J]. 计算机工程与应用, 2019,55(18):103-110.
[18] 段锁林,尚允坤,潘礼正. 多类运动想象脑电信号特征提取与分类[J]. 计算机测量与控制, 2016,24(2):283-287.
[19]TIPPING M E, BISHOP C M. Probabilistic principle component analysis[J]. Journal of Royal Statistical Society, 1999,61(3):611-622.
[20]JOLLIFFE I T. Principal component analysis[J]. Journal of Marketing Research, 2002,25(4):513.
[21]BISHOP C M. Pattern Recognition and Machine Learning[M]. Springer, 2006.
[22]TREES H L V. Optimum Array Processing[M]. John Wiely, 2003.
[23]胡命嘉,宫玉琳,王锋. 基于PSO-SVM的手势识别方法研究[J]. 长春理工大学学报(自然科学版), 2019,42(4):102-106.
[24]ZHANG X, DU K J, ZHAN Z H, et al. Cooperative coevolutionary bare-bones particle swarm optimization with function independent decomposition for large-scale supply chain network design with uncertainties[J]. IEEE Transactions on Cybernetics, 2020,50(10):4454-4468.
[25]WANG Z J, ZHAN Z H, YU W J, et al. Dynamic group learning distributed particle swarm optimization for large-scale optimization and its application in cloud workflow scheduling[J]. IEEE Transactions on Cybernetics, 2020,50(6):2715-2729.
[26]WANG Z J, ZHAN Z H, KWONG S, et al. Adaptive granularity learning distributed particle swarm optimization for large-scale optimization[J]. IEEE Transactions on Cybernetics, 2020:1-14.
[27] LIU X F, ZHAN Z H, GAO Y, et al. Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2019,23(4):587-602.
[28]XIA X W, GUI L, YU F, et al. Triple archives particle swarm optimization[J]. IEEE Transactions on Cybernetics, 2020,50(12):4862-4875.
|