[1] MOHAMMADI M R, FATEMIZADEH E, MAHOOR M H.PCA-based dictionary building for accurate facial expression recognition via sparse representation[J]. Journal of Visual Communication and Image Representation, 2014,25(5):1082-1092.
[2] SHABAT A M M, TAPAMO, J R T. Angled local directional pattern for texture analysis with an application to facial expression recognition[J]. IET Computer Vision, 2018,12(5):603-608.
[3] ZHANG B R, LIU G Y, XIE G Q. Facial expression recognition using LBP and LPQ based on Gabor wavelet transform[C]// Proceedings of IEEE International Conference on Computer and Communications. 2017:365-369.
[4] SUN N, CHEN Z, DAY R. Facial expression recognition using digitalised facial features based on active shape model[C]// Proceedings of the 6th International Conference on Computer Science, Engineering & Applications. 2016:39-46.
[5] 刘娟,胡敏,黄忠. Gabor多方向特征融合与分块统计的表情识别[J]. 电子测量与仪器学报, 2015,29(11):1698-1705.
[6] WANG X H, LIU A, ZHANG S Q. New facial expression recognition based on FSVM and KNN[J]. Optik, 2015,126(21):3132-3134.
[7] ZHANG S Q, LI L M, ZHAO Z J. Facial expression recognition based on Gabor wavelets and sparse representation[C]// 2012 IEEE 11th International Conference on Signal Processing. 2012,2:816-819.
[8] HAI T S, LE H T, THUY N T. Facial expression classification using artificial neural network and K-nearest neighbor[J]. International Journal of Information Technology & Computer Science, 2015,7(3):27-32.
[9] SAURAV S, SINGH S, SAINI R, et al. Hardware accelerator for facial expression classification using linear SVM[M]// Advances in Signal Processing and Intelligent Recognition Systems. Springer, 2015:39-50.
[10]TAE-KI A, MOON-HYUN K.A new diverse AdaBoost classifier[C]// 2010 International Conference on Artificial Intelligence and Computational Intelligence. 2010:359-363.
[11]KUNG S H. Facial expression recognition using optical flow and 3D HMM and human action recognition using cuboid and topic models[D]. Oakland USA: Oakland University, 2016.
[12]KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet: Classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012:1097-1105.
[13]REDOMN J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:779-788.
[14]SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:1-9.
[15]LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11):2278-2324.
[16]SARRAF S, TOFIGHI G. Deep learning-based pipeline to recognize Alzheimer’s disease using fMRI data[C]// 2016 Future Technologies Conference (FTC). 2016:816-820.
[17]林哲聪,张江鑫. 一种基于GMP-LeNet网络的车牌识别方法[J]. 计算机科学, 2018,45(6A):183-186.
[18]王秀席,王茂宁,张建伟,等. 基于改进的卷积神经网络LeNet-5的车型识别方法[J]. 计算机应用研究, 2018,35(7):2215-2218.
[19]李丹,沈夏炯,张海香,等. 基于LeNet-5的卷积神经网络改进算法[J]. 计算机时代, 2016(8):4-6.
[20]李勇,林小竹,蒋梦莹. 基于跨连接LeNet-5网络的面部表情识别[J]. 自动化学报, 2018,44(1):176-182.
[21]卢官明,何嘉利,闫静杰,等. 一种用于人脸面部表情识别的卷积神经网络[J]. 南京邮电大学学报(自然科学版), 2016,36(1):16-22.
[22]HUBEL D H, WIESEL T N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex[J]. Journal of Physiology, 1962,160:106-154.
[23]DAHL G E,SAINATH T N, HINTON G E. Improving deep neural networks for LVCSR using rectified linear units and dropout[C]// IEEE International Conference on Acoustics, Speech and Signal Processing. 2013:8609-8613.
[24]SAUL L K, JAAKKOLA T, JORDAN M I. Mean field theory for sigmoid belief networks[J]. Journal of Artificial Intelligence Research, 1996,4(1):61-76.
[25]MALFLIET W. The tanh method: A tool for solving certain classes of nonlinear evolution and wave equations[J]. Journal of Computational & Applied Mathematics, 2004,164-165:529-541.
[26]翟懿奎,刘健. 面向人脸表情识别的迁移卷积神经网络研究[J]. 信号处理, 2018,34(6):729-738.
[27]AL-SHABI M, CHEAH W P, CONNIE T, et al. Facial expression recognition using a Hybrid CNN-SIFT aggregator[C]// Proceedings of the 11th Multi-Disciplinary International Workshop on Artificial Intelligence. 2017:139-149. |