[1] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002,6(2):182-197.
[2] DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014,18(4):577-601.
[3] JAIN H, DEB K. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II:Handling constraints and extending to an adaptive approach[J]. IEEE Transactions on Evolutionary Computation, 2014,18(4):602-622.
[4] CHEN M R, LU Y Z. A novel elitist multiobjective optimization algorithm: Multiobjective extremal optimization[J]. European Journal of Operational Research, 2008,188(3):637-651.
[5] LUO J P, LIU Q Q, YANG Y, et al. An artificial bee colony algorithm for multi-objective optimisation[J]. Applied Soft Computing, 2017,50:235-251.
[6] ZHANG Q F, LI H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007,11(6):712-731.
[7] PENG W, ZHANG Q F. A decomposition-based multi-objective particle swarm optimization algorithm for continuous optimization problems[C]// Proceedings of the 2008 IEEE International Conference on Granular Computing. 2008:534-537.
[8] ZHANG Q F, LIU W D, LI H. The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances[C]// Proceedings of the 2009 IEEE Congress on Evolutionary Computation. 2009:203-208.
[9] LI H, LANDA-SILVA D. An adaptive evolutionary multi-objective approach based on simulated annealing[J]. Evolutionary Computation, 2011,19(4):561-595.〖HJ0.68mm〗
[10]ZHAO S Z, SUGANTHAN P N, ZHANG Q F. Decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes[J]. IEEE Transactions on Evolutionary Computation, 2012,16(3):442-446.
[11]JAN M A, KHANUM R A. A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D[J]. Applied Soft Computing, 2013,13(1):128-148.
[12]KE L J, ZHANG Q F, BATTITI R. MOEA/D-ACO: A multiobjective evolutionary algorithm using decomposition and AntColony[J]. IEEE Transactions on Cybernetics, 2013,43(6):1845-1859.
[13]CHANG P C, CHEN S H, ZHANG Q F, et al. MOEA/D for flowshop scheduling problems[C]// Proceedings of the 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). 2008:1433-1438.
[14]KONSTANTINIDIS A, ZHANG Q F, YANG K. A subproblem-dependent heuristic in MOEA/D for the deployment and power assignment problem in wireless sensor networks[C]// Proceedings of the 2009 IEEE Congress on Evolutionary Computation. 2009:2740-2747.
[15]ZHANG Q F, LIU W D, TSANG E, et al. Expensive multiobjective optimization by MOEA/D with Gaussian process model[J]. IEEE Transactions on Evolutionary Computation, 2010,14(3):456-474.
[16]SILVA R C P, LI M, RAHMAN T, et al. Surrogate-based MOEA/D for electric motor design with scarce function evaluations[J]. IEEE Transactions on Magnetics, 2017,53(6): Article Sequence Number: 7400704.
[17]YANG X S. Flower pollination algorithm for global optimization[C]// Proceedings of the 2012 International Conference on Unconventional Computing and Natural Computation. 2012:240-249.
[18]YANG X S, DEB S, HE X S. Eagle strategy with flower algorithm[C]// Proceedings of the 2013 International Conference on Advances in Computing, Communications and Informatics. 2013:1213-1217.
[19]ABDEL-RAOUF O, ABDEL-BASET M, EL-HENAWY I. A new hybrid flower pollination algorithm for solving constrained global optimization problems[J]. International Journal of Applied Operational Research, 2014,4(2):1-13.
[20]YANG X S, KARAMANOGLU M, HE X S. Multi-objective flower algorithm for optimization[J]. Procedia Computer Science, 2013,18:861-868.
[21]DAS I, DENNIS J E. A close look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems[J]. Structure Optimization, 1997,14(1):63-69.
[22]KARABOGA D. An Idea Based on Honey Bee Swarm for Numerical Optimization[R]. Erciyes University, 2005.
[23]KNOWLES J D, CORNE D W. Approximating the nondominated front using the Pareto archived evolution strategy[J]. Evolutionary Computation, 2000,8(2):149-172.
[24]LAUMANNS M, THIELE L, DEB K, et al. Combining convergence and diversity in evolutionary multiobjective optimization[J]. Evolutionary Computation, 2002,10(3):263-282.
[25]ZITZLER E, DEB K, THIELE L. Comparison of multiobjective evolutionary algorithms: Empirical results[J]. Evolutionary Computation, 2000,8(2):173-195.
[26]ZHANG Q F. Professor Qingfu Zhang[DB/OL]. [2018-05-18]. https://dces.essex.ac.uk/staff/qzhang/. |