Computer and Modernization ›› 2018, Vol. 0 ›› Issue (07): 33-.doi: 10.3969/j.issn.1006-2475.2018.07.007

Previous Articles     Next Articles

TFT-LCDCircuitDefectsDetectionBasedonFasterR-CNN

  

  1. (SchoolofPhysicalScienceandTechnology,XiamenUniversity,Xiamen361001,China)
  • Received:2018-01-05 Online:2018-08-23 Published:2018-08-27

Abstract: ThedetectionoftinyandcomplexdefectsinthebordercircuitofThinFilmTransistor-LiquidCrystalDisplay(TFT-LCD)hasbeenadifficultpointinAutomaticOpticalInspection(AOI).ThispaperdetectsTFT-LCDbordercircuitdefectsbyusingimprovedFasterRegion-basedConvolutionalNeuralNetwork(FasterR-CNN).Thealgorithmextractsfeaturesfromsharedconvolutionallayersfirstly,andthengeneratescandidateregionsaccuratelythroughthemultilayeredRegionProposalNetwork(RPN),whichcanrecognizeandlocatethetargetscombiningwithclassificationinformation.Weanalyzetheperformancesofthemethodwithdifferentnetworkstructureswedesigned,andcomparewithdifferentalgorithms.Theexperimentstrainedinabordercircuitdatasetshowthatthemethodachievesexcellentperformance,andthedetectionsystemcanrecognizeandlocatesixkindsofTFT-LCDbordercircuitdefectsinoneimagesimultaneouslywithin0.12sandachieveanaccuracyof94.6%.

Key words: defectdetection, industrialintelligence, region-basedconvolutionalneuralnetwork, deeplearning

CLC Number: