Computer and Modernization ›› 2017, Vol. 0 ›› Issue (4): 82-88.doi: 10.3969/j.issn.1006-2475.2017.04.017
Previous Articles Next Articles
Received:
2016-08-04
Online:
2017-04-20
Published:
2017-05-08
CLC Number:
ZHANG Yu-jie, YU Shuang-yuan. Overview on Big Data Query[J]. Computer and Modernization, 2017, 0(4): 82-88.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.c-a-m.org.cn/EN/10.3969/j.issn.1006-2475.2017.04.017
[1] 徐保民. 云计算解密:技术原理及应用实践[M]. 北京:电子工业出版社, 2014.
[2] 李雷. 大数据环境下数据存储与查询的研究[D]. 哈尔滨:哈尔滨工业大学, 2014. [3] 杜晓东. 大数据环境下基于Hbase的分布式查询优化研究[J]. 计算机光盘软件与应用, 2014(8):22-24. [4] 杨晶,刘天时,马刚. 分布式数据库数据分片与分配[J]. 现代电子技术, 2006,29(18):119-121. [5] 丁原,刘玉树,朱天焕. 多节点集群服务器系统共享磁盘私有网的研究[J]. 北京理工大学学报, 2001,21(1):62-64. [6] 张旭中. 分布式数据库查询优化技术[D]. 成都:电子科技大学, 2003. [7] 阮梦黎. 大数据挑战下的NoSQL系统研究[J]. 聊城大学学报(自然科学版), 2015,28(1):88-93. [8] 张滨,陈吉荣,乐嘉锦. 大数据管理技术研究综述[J]. 计算机应用与软件, 2014,31(11):1-5. [9] Pavlo A, Paulson E, Rasin A, et al. A comparison of approaches to large-scale data analysis[C]// ACM SIGMOD International Conference on Management of Data. 2009:165-178. [10]Dean J, Ghemawat S. MapReduce: A flexible data processing tool[J]. Communications of the ACM, 2010,53(1):72-77. [11]Stonebraker M, Abadi D, DeWitt D J, et al. MapReduce and parallel DBMSs: Friends or foes?[J]. Communications of the ACM, 2010,53(1):64-71. [12]Olson M A, Bostic K, Seltzer M. Berkeley DB[C]// Freenix Track: 1999 Usenix Technical Conference. 1999:183-191. [13]百度百科. Cassandra(开源分布式NoSQL数据库系统)[EB/OL]. http://baike.baidu.com/link?url=rgH8lTQ H4KpAWbVvCkh6oxtoUA6UoGlQDdVRhOuW3NzblbdZZW Yb4KI2bz8aaorZ63MD-V9J6Yl4_b7jzHrojEuSkGq7DTY84 qDAC2e5z-K, 2016-06-14. [14]Neo Technology Inc. What Is Neo4j?[EB/OL]. https://neo4j.com/, 2016-06-14. [15]百度百科. HyperGraphDB [EB/OL]. http://baike.baidu.com/view/9329210.htm, 2016-08-14. [16]Gilbert S, Lynch N. Brewers conjecture and the feasibility of consistent, available, partition-tolerant Web services[J]. ACM SIGACT News, 2002,33(2):51-59. [17]Brewer E. CAP twelve years later: How the “Rules” have changed[J]. Computer, 2012,45(2):23-29. [18]〖KG-*6〗Pavlo A, Aslett M. Whats really new with NewSQL?[J]. ACM SIGMOD Record, 2016,45(2):45-55. [19]Corbett J C, Dean J, Epstein M, et al. Spanner: Googles globally-distributed database[C]// 10th Usenix Conference on Operating Systems Design and Implementation. 2012:251-264. [20]VoltDB Inc.. What Is VoltDB? [EB/OL]. https://www.voltdb.com/overview, 2013-09-29. [21]Clustrix Inc.. A New Approach: Clustrix Sierra Database Engine[EB/OL]. http://www.clustrix.com/wp-content/uploads/2013/10/Clustrix_A-New-Approach_WhitePaper.pdf, 2013-09-29. [22]NuoDB Greenbook Publication. NuoDB Emergent Architecture[EB/OL]. http://go.nuodb.com/rs/nuodb/images/Greenbook_Final.pdf, 2013-09-29. [23]Grolinger K, Higashino W A, Tiwari A, et al. Data management in cloud environments: NoSQL and NewSQL data stores[J]. Journal of Cloud Computing: Advances Systems & Applications, 2013,2(1):Article No. 49. [24]Ong K W, Papakonstantinou Y, Vernoux R. The SQL+〖KG-*3〗+ Semi-structured Data Model and Query Language: A Capabilities Survey of SQL-on-Hadoop, NoSQL and NewSQL 〖JP2〗Databases[EB/OL]. https://arxiv.org/abs/1405.3631v1, 2014-03-14. [25]Niazi S, Ismail M, Grohsschmiedt S, et al. HopsFS: Scaling Hierarchical File System Metadata Using NewSQL Databases[EB/OL]. https://arxiv.org/abs/1606.01588, 2016-06-06. [26]Yuan Liyan, Wu Lengdong, You Jiahuai, et al. A demonstration of Rubato DB: A highly scalable newSQL database system for OLTP and big data applications[C]// Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. 2015:907-912. [27]Doshi K A, Zhong Tao, Lu Zhongyan, et al. Blending SQL and newSQL approaches: Reference architectures for enterprise big data challenges[C]// Proceedings of the 2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery. 2013:163-170. [28]Kepner J, Gadepally V, Hutchison D, et al. Associative Array Model of SQL, NoSQL, and NewSQL Databases[EB/OL]. https://arxiv.org/abs/1606.05797, 2016-06-18. [29]Moniruzzaman A B M. NewSQL: Towards next-generation scalable RDBMS for Online Transaction Processing(OLTP) for big data management[J]. Inernational Journal of Database Theory and Application, 2014,7(6):121-130. [30]黄宜华,苗凯翔. 深入理解大数据[M]. 北京:机械工业出版社, 2014. [31]Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters[C]// Proceedings of the 6th Conference on Symposium on Opearting Systems Design & Implementation. 2004:107-113. [32]Ghemawat S, Gobioff H, Leung S T. The Google file system[C]// Proceedings of the 19th ACM Symposium on Operating Systems Principles. 2003:29-43 [33]Chang F, Dean J, Ghemawat S, er al. Bigtable: A distributed storage system for structured data[C]// Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation. 2006:205-218. [34]White T. Hadoop权威指南[M]. 华东师范大学数据科学与工程学院译. 北京:清华大学出版社, 2015. [35]DeWitt D J, Stonebraker M. MapReduce: A Major Step Backwards[EB/OL]. http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html, 2008-01-17. [36]谌超,强保华,石龙. 基于Hadoop MapReduce的大规模数据索引构建与集群性能分析[J]. 桂林电子科技大学学报, 2012,32(4):307-312. [37]Murthy A C. The Next Generation of Apache Hadoop MapReduce[EB/OL]. http://www.360doc.com/content/11/0321/22/2459_103337406.shtml, 2011-03-16. [38]Vavilapalli V K, Murthy A C, Douglas C, et al. Apache Hadoop YARN: Yet another resource negotiator[C]// Proceedings of the 4th Annual Symposium on Cloud Computing. 2013:Article No. 5. [39]JIRA. Browse Projects[EB/OL]. https://issues.apache.org/jira/secure/BrowseProjects.jspa#10292, 2016-06-01. [40]数盟社区. 呼之欲出!比Spark快10倍的Hadoop3.0有哪些实用新特性?[EB/OL]. http://toutiao.com/i6290843711718818306/, 2016-05-31 [41]夏俊鸾,刘旭辉,邵赛赛,等. Spark大数据处理技术[M]. 北京:电子工业出版社, 2015. [42]Zaharia M, Chowdhury M, Das T, et al. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing[C]// Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation. 2012:2. [43]Zaharia M, Chowdhury M, Franklin M J, et al. Spark: Cluster computing with working sets[C]// Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing. 2010:10. [44]Zaharia M. An Architecture for Fast and General Data Processing on Large Clusters[M]. Association for Computing Machinery and Morgan & Claypool, 2016. [45]于俊,向海,代其锋,等. Spark核心技术与高级应用[M]. 北京:机械工业出版社, 2016. [46]Thusoo A, Sarma J S, Jain N, et al. Hive: A warehousing solution over a Map-Reduce framework[J]. Proceedings of the VLDB Endowment, 2011,2(2):1626-1629. [47]Thusoo A, Sarma J S, Jain N, et al. Hive: A petabyte scale data warehouse using Hadoop[C]// IEEE 29th International Conference on Data Engineering. 2010:996-1005. [48]梁国蓉. 一个基于Dataflow的大数据Query Engine系统的设计与实现[D]. 南京:南京大学, 2015. [49]Shute J, Vingralek R, Samwel B, et al. F1: A distributed SQL database that scales[J]. Proceedings of the VLDB Endowment, 2013,6(11):1068-1079. [50]Cloudera, Inc.. Apache Impala (incubating) [EB/OL]http://www.cloudera.com/products/apache-hadoop/impala.html, 2016-06-01. [51]Armbrust M, Xin R S, Lian C, et al. Spark SQL: Relational data processing in Spark[C]// ACM SIGMOD International Conference on Management of Data. 2015:1383-1394. |
[1] | LI Junxiao1, ZHANG Xiaolin1, SHI Jing2. Blockchain-enhanced Vehicle Edge Computing Networks Security Data Storage and Share [J]. Computer and Modernization, 2024, 0(07): 69-75. |
[2] | QIU Ling1, 2, SONG Zhi1, 2, LYU Shuang1, 2, YANG Xue1, 2. Application of Data Synchronization Technology in External Services of Meteorological Big Data Cloud Platform [J]. Computer and Modernization, 2024, 0(07): 76-81. |
[3] | YU Chun-lei1, 2, LIU Du-jin1, ZHU Hua-wei1, YANG Jia-rong3. Fractional Repetition Codes Based on Petersen Graphs [J]. Computer and Modernization, 2024, 0(03): 122-126. |
[4] | ZHANG Jun, SU Wen-hao. Optimization Method of Hadoop File Archiving Based on LZO [J]. Computer and Modernization, 2023, 0(06): 1-6. |
[5] | ZHOU Ming-sheng, ZHANG Wen. A Smart Park Management Platform for Multi-source Data [J]. Computer and Modernization, 2023, 0(05): 68-74. |
[6] | QIU Jin-shui, ZHUANG Hui-fu, JIN Tao. Design of Intelligent Retrieval System for Massive Plant Images [J]. Computer and Modernization, 2022, 0(10): 62-67. |
[7] | SHAN Ke, ZHANG Yi-ming, LIU Rui-xia, . Research and Design of Science and Technology Service Resource Pool Oriented to Central Plains Urban Agglomeration [J]. Computer and Modernization, 2022, 0(07): 91-96. |
[8] | HUANG AN-qi, MIAO Fang, YANG Wen-hui, NI Ya-ting, JIANG Yuan. Design of Structured Data Registration Engine Based on Data Architecture [J]. Computer and Modernization, 2022, 0(05): 82-89. |
[9] | XU Hui, TIE Zhi-xin, SHU Ying. Fast Dimensionality Reduction Sorting Search Method Based on Feature Matching [J]. Computer and Modernization, 2022, 0(02): 85-91. |
[10] | CAO Yu, LI Xiao-hui, LIU Zhong-lin, JIA He, FEI Zhi-wei. Review of Big Data Workflow Orchestration and Management System in Cloud Environment [J]. Computer and Modernization, 2022, 0(01): 41-53. |
[11] | ZHANG Xiao-fang, FENG Hui-fang. Dynamic Optimal Path Planning Based on Trajectory Big Data [J]. Computer and Modernization, 2021, 0(11): 82-88. |
[12] | LI Ming, CHEN Ji-fu, YI Xiao-rong, LIU Shu-ming. An Environment Monitoring System for Dongting Lake Based on JFinal Framework [J]. Computer and Modernization, 2021, 0(10): 41-48. |
[13] | LIU Zheng, WU Ke-hua, YE Chun-xiao. Security-enhanced Data Access Control for Multi-authority Cloud Storage [J]. Computer and Modernization, 2021, 0(10): 119-126. |
[14] | WEI Yun-dong. Intelligent Talent Recommendation Method Based on Big Data Technology [J]. Computer and Modernization, 2021, 0(07): 60-64. |
[15] | LEI Ming, JIANG Han-sheng, WU Guo-liang, ZHAO Yu-juan, LIANG Jian. Load Balancing Technology Under Big Data Architecture Based on HBase [J]. Computer and Modernization, 2021, 0(06): 91-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||