[1] Heady R, Luger G, Maccabe A, et al. The Architecture of a Network Level Intrusion Detection System[R]. Mexico: University of New Mexico, 1990.
[2] 杜强,孙敏. 基于改进聚类分析算法的入侵检测系统研究[J]. 计算机工程与应用, 2011,47(11):106-108.
[3] Dacier M, Jackson K.Intrusion detection[J]. Computer Networks, 1999,31(23-24):2433-2434.
[4] 张巍,滕少华,傅秀芬. 数据融合的协同网络入侵检测[J]. 计算机应用, 2009,29(1):284-287.
[5] 王茜,唐锐. 基于频繁模式的离群点挖掘在入侵检测中的应用[J]. 计算机应用研究, 2013,30(4):1208-1211.
[6] 闫少华,张巍,滕少华. 基于密度的离群点挖掘在入侵检测中的应用[J]. 计算机工程, 2011,37(18):240-242.
[7] van Kreveld M, Mitchell S B, Rousseeuw P, et al. Efficient algorithms for maximum regression depth[J]. Discrete & Computational Geometry, 2008,39(4):656-677.
[8] Breunig M M, Kriegel H P, Ng R, et a1. LOF: Identifying density based local outliers[C]// Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. 2000:93-104.
[9] Duan Lian, Xu Lida, Guo Feng, et al. A local-density based spatial clustering algorithm with noise[J]. Information Systems, 2007,32(7):978-986.
[10]Li Xueyong, Gao Guohong, Sun Jiaxia. A new intrusion detection method based on improved DBSCAN[C]// 2010 WASE International Conference on Information Engineering(ICIE). 2010,2:117-120.
[11]朱廷劭,高文. KDD:数据库中的知识发现[J]. 计算机科学, 1997(6):5-9.
[12]祁亨年. 支持向量机及其应用研究综述[J]. 计算机工程, 2004,30(10):6-9.
[13]Jrg Sander, Martin Ester, Hans-Peter Kriegel, et al. Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications[J]. Data Mining and Knowledge Discovery, 1998,2(2):169-194.
[14]韩家炜. 数据挖掘:概念与技术(英文版)[M]. 2版. 北京:机械工业出版社, 2006.
[15]吴新玲. 数据维数消减方法研究[J]. 计算机工程与设计, 2006,16(27):3000-3002.
[16]杨建华,蒋玉明,彭轮. 数据挖掘在网络入侵检测中的应用研究[J]. 微计算机信息, 2009,25(24):27-29.
[17]Zhang Yongli, Zhu Yanwei. Application of improved support vector machines in intrusion detection[C]// 2010 2nd International Conference on e-Business and Information System Security(EBISS). 2010:1-4.
[18]Liu Qiliang, Deng Min, Shi Yan, et al. A density-based spatial clustering algorithm considering both spatial proximity and attribute similarity[J]. Computers and Geosciences, 2012,46:296-309.
|