Computer and Modernization ›› 2015, Vol. 0 ›› Issue (8): 48-56.doi: 10.3969/j.issn.1006-2475.2015.08.010
Previous Articles Next Articles
Received:
2015-03-09
Online:
2015-08-08
Published:
2015-08-19
CLC Number:
LIANG Wei-chao, SONG Bin. A Review on Multi-Label Learning[J]. Computer and Modernization, 2015, 0(8): 48-56.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.c-a-m.org.cn/EN/10.3969/j.issn.1006-2475.2015.08.010
[1] Schapire R E, Singer Y. Boostexter: A boosting-based system for text categorization[J]. Machine Learning, 2000,39(2/3):135-168. [2] Ueda N, Saito K. Parametric mixture models for multi-labeled text[C]// Proceedings of the 10th International Conference on Neural Information Processing. 2003:721-728. [3] Gao Sheng, Wu Wen, Lee C H, et al. An MFoM learning approach to robust multiclass multi-label text categorization[C]// Proceedings of the 21st International Conference on Machine Learning. 2004:329-336. [4] Boutell M R, Luo Jiebo, Shen Xipeng, et al. Learning multi-label scene classification[J]. Pattern Recognition, 2004,37(9):1757-1771. [5] Sanden C, Zhang J Z. Enhancing multi-label music genre classification through ensemble techniques[C]// Proceeding of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2011:705-714. [6] Wieczorkowska A, Synak P, Ra〖KG-*4〗〖JX-+0.5mm〗〖XCs.tif〗〖JX+0.5mm〗 Z W. Multi-label classification of emotions in music[C]// Proceedings of the 16th International Conference on Intelligent Information Processing and Web Mining. 2006:307-315. [7] Wang Mei, Zhou Xiangdong, Chua Tat-Seng. Automatic image annotation via local multi-label classification[C]// Proceedings of the 2008 International Conference on Content-based Image and Video Retrieval. 2008:17-26. [8] Kazawa H, Izumitani T, Taira H, et al. Maximal margin labeling for multi-topic text categorization[C]// Proceedings of the Advances in Neural Information Processing Systems 17. 2004:649-656. [9] Tang Lei, Rajan S, Narayanan V K. Large scale multi-label classification via metalabeler[C]// Proceedings of the 18th International Conference on World Wide Web. 2009:211-220. [10]Rak R, Kurgan L, Reformat M. Multi-label associative classification of medical documents from MEDLINE[C]// Proceedings of the 4th International Conference on Machine Learning and Applications. 2005:177-186. [11]Thabtah F A, Cowling P, Peng Yonghong. MMAC: A new multi-class, multi-label associative classification approach[C]// Proceedings of the 4th IEEE International Conference on Data Mining. 2004:217-224. [12]Sangsuriyun S, Marukatat S, Waiyamai K. Hierarchical multi-label associative classification(HMAC) using negative rules [C]// Proceedings of the 9th IEEE International Conference on Cognitive Informatics. 2010:919-924. [13]Gopal S, Yang Yi-ming. Multilabel classification with meta-level features[C]// Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2010:315-322. [14]Read J, Puurula A, Bifet A. Multi-label classification with meta-labels[C]// Proceedings of the 14th IEEE International Conference on Data Mining. 2014:941-946. [15]Zhu Sheng-huo, Ji Xiang, Xu Wei, et al. Multi-labelled classification using maximum entropy method[C]// Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 2005:274-281. [16]Clare A, King R. Knowledge discovery in multi-label phenotype data[C]// Proceedings of the 5th European Conference on Principles of Data Mining and Knowledge Discovery. 2001:42-53. [17]Zhang Min-ling, Zhou Zhi-hua. Multilabel neural networks with applications to functional genomics and text categorization[J]. IEEE Transactions on Knowledge and Data Engineering, 2006,18(10):1338-1351. [18]Kordmahalleh M M, Homaifar A, Dukka B K C. Hierarchical multi-label gene function prediction using adaptive mutation in crowding niching [C]// Proceedings of the 13th International Conference on Bioinformatics and Bioengineering. 2013:1-6. [19]Fabris F, Freitas A A. Dependency network methods for hierarchical multi-label classification of gene functions[C]// Proceedings of the 2014 IEEE Symposium on Computational Intelligence and Data Mining. 2014:241-248. [20]Song Yang, Zhang Lu, Giles L C. A sparse Gaussian processes classification framework for fast tag suggestions[C]// Proceedings of the 17th ACM Conference on Information and Knowledge Management. 2008:93-102. [21]Xia Xin, Lo David, Wang Xin-yu, et al. Tag recommendation in software information sites[C]// Proceedings of the 10th IEEE Working Conference on Mining Software Repositories. 2013:287-296. [22]Maimon O, Rokach L. Data Mining and Knowledge Discovery Handbook[M]. 2nd ed. Berlin: Springer, 2010:667-685. [23]Zhang Min-ling, Zhang Kun. Multi-label learning by exploiting label dependency[C]// Proceedings of 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2010:999-1008. [24]Tsoumakas G, Vlahavas I. Random k-labelsets: An ensemble method for multilabel classification[C]// Proceedings of the 18th European Conference on Machine Learning. 2007:406-417. [25]Ghamrawi I N, McCallum A. Collective multi-label classification[C]// Proceedings of the 14th ACM International Conference on Information and Knowledge Management. 2005:195-200. [26]Godbole S, Sarawagi S. Discriminative methods for multi-labelled classification[C]// Proceedings of the 8th Pacific-Asia Conference on Knowledge Discovery and Data Mining. 2004:22-30. [27]Hüllermeier E, Fürnkranz J, Cheng Wei-wei, et al. Label ranking by learning pairwise preferences[J]. Artificial Intelligence, 2008,172(16-17):1897-1916. [28]Fürnkranz J, Hüllermeier E, Mencía L E, et al. Multilabel classification via calibrated label ranking[J]. Machine Learning, 2008,73(2):133-153. [29]Read J, Pfahringer B, Holmes G, et al. Classifier chains for multi-label classification[C]// Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases: Part II. 2009,5782:254-269. [30]Read J. A pruned problem transformation method for multi-label classification[C]// Proceedings of the New Zealand Computer Science Research Student Conference. 2008:143-150. [31]Zhang Min-ling, Zhou Zhi-hua. ML-KNN: A lazy learning approach to multi-label learning [J]. Pattern Recognition, 2007,40(7):2038-2048.〖HJ1.6mm〗 [32]Simoudis E, Aha D W. Special AI review issue on lazy learning[J]. Artificial Intelligence Review, 1997,11(1-5):7-10. [33]Luo Xiao, Zincir-Heywood A N. Evaluation of two systems on multi-class multi-label document classification[C]// Proceedings of 15th International Symposium on Methodologies for Intelligent System. 2005:161-169. [34]Xu Jian-hua. Multi-label weighted k-nearest neighbor classifier with adaptive weight estimation[C]// Proceedings of the 18th International Conference on Neural Information Processing. 2011:79-88. [35]张敏灵. 一种新型多标记懒惰学习算法[J]. 计算机研究与发展, 2012,49(11):2271-2282. [36]程圣军,黄庆成,刘家锋,等. 一种改进的ML-KNN多标记文档分类方法[J]. 哈尔滨工业大学学报, 2013,45(11):45-49. [37]De Comité F, Gilleron R, Tommasi M. Learning multi-label alternating decision tree from texts and data[C]// Proceedings of the 3rd International Conference on Machine Learning and Data Mining in Pattern Recognition. 2003:35-49. [38]Borges H B, Nievola J C. Multi-label hierarchical classification using a competitive neural network for protein function prediction [C]// Proceedings of the 2012 International Joint Conference on Neural Networks. 2012:1-8. [39]Kongsorot Y, Horata P. Multi-label classification with extreme learning machine[C]// Proceedings of the 6th International Joint Conference on Knowledge and Smart Technology. 2014:81-86. [40]Chen Ben-hui, Duan Li-hua, Hu Jing-lu. Composite kernel based SVM for hierarchical multi-label gene function classification[C]// Proceedings of the 2012 International Joint Conference on Neural Networks. 2012:1-6. [41]Wan Shi-biao, Mak Man-wai, Kung Sun-yuan. Adaptive thresholding for multi-label SVM classification with application to protein subcellular localization prediction[C]// Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. 2013:3457-3551. [42]孔祥南,黎铭,姜远,等. 一种针对弱标记的直推式多标记分类方法[J]. 计算机研究与发展, 2010,47(8):1392-1399. [43]田枫,沈旭昆. 弱标签环境下基于语义邻域学习的图像标注[J]. 计算机研究与发展, 2014,51(8):1821-1832. [44]Sun Yu-yin, Zhang Yin, Zhou Zhi-hua. Multi-label learning with weak label[C]// Proceedings of the 24th AAAI Conference on Artificial Intelligence. 2010:593-598. [45]Chen Gang, Song Yangqiu, Wang Fei, et al. Semi-supervised multi-label learning by solving a Sylvester equation[C]// Proceedings of the 8th SIAM International Conference on Data Mining. 2008:410-419. [46]〖JP2〗Zhang Chen-guang, Zhang Xia-huan. Graph-based semi-supervised multi-label learning method[C]// Proceedings of the 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer. 2013:1021-1025. [47]Wang Hua, Huang Heng, Ding C. Image annotation using multi-label correlated Green’s function[C]// Proceedings of the 12th IEEE International Conference on Computer Vision. 2009:2029-2034. [48]Kong Xiang-nan, Michael K N, Zhou Zhi-hua. Transductive multilabel learning via label set propagation[J]. IEEE Transactions on Knowledge and Data Engineering, 2013,25(3):704-719. [49]Liu Yi, Jin Rong, Yang Liu. Semi-supervised multi-label learning by constrained non-negative matrix factorization[C]// Proceedings of the 21st AAAI Conference on Artificial Intelligence. 2006:421-426. [50]Esuli A, Sebastiani F. Active learning strategies for multi-label text classification[C]// Proceedings of the 31st European Conference on IR Research on Advances in Information Retrieval. 2007:102-113. [51]Wu Jian, Sheng V S, Zhang Jing, et al. Multi-label active learning for image classification[C]// Proceedings of the 2014 IEEE International Conference on Image Processing. 2014:5227-5231. [52]Yu Kai, Yu Shi-peng, Tresp V. Multi-label informed latent semantic indexing[C]// Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 2005:258-265. [53]Wang Hua, Ding C, Huang Heng. Multi-label linear discriminant analysis[C]// Proceedings of the 11th European Conference on Computer Vision: Part VI. 2010:126-139. [54]Park C H, Lee M. On applying linear discriminant analysis for multi-labeled problems[J]. Pattern Recognition Letters, 2008,29(7):878-887. [55]Doquire G, Verleysen M. Feature selection for multi-label classification problems[C]// Proceedings of the 11th International Work-Conference on Artificial Neural Networks. 2011:9-16. [56]Jungjit S, Freitas A A, Michaelis M, et al. Two extensions to multi-label correlation-based feature selection: A case study in bioinformatics[C]// Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics. 2013:1519-1524. [57]Zhang Yin, Zhou Zhi-hua. Multilabel dimensionality reduction via dependence maximization[J]. ACM Transactions on Knowledge Discovery from Data, 2010,4(3):Article No.14. [58]〖JP2〗Gu Quan-quan, Li Zhen-hui, Han Jia-wei. Correlated multi-label feature selection[C]// Proceedings of the 20th ACM International Conference on Information and Knowledge Management. 2011:1087-1096. [59]Ji Shui-wang, Ye Jie-ping. Linear dimensionality reduction for multi-label classification[C]// Proceedings of the 21st International Joint Conference on Artificial Intelligence. 2010:1077-1082. |
[1] | WANG Mengxi, LI Jun. Review of Fall Detection Technologies for Elderly [J]. Computer and Modernization, 2024, 0(08): 30-36. |
[2] | YUAN Hongwei1, CHANG Lijun1, HAO Jianhuan2, FAN Na2, WANG Chao2, LUO Chuang2, ZHANG Zehui2. Trajectory Interest Points Mining Based on Label Propagation and Privacy Protection [J]. Computer and Modernization, 2024, 0(05): 46-54. |
[3] | JIA Xiao-yao, . Breast Cancer Prediction and Feature Analysis Model Based on CatBoost and SHAP [J]. Computer and Modernization, 2023, 0(10): 32-38. |
[4] | XIE Shi-bin, LIU Meng-chi, TANG Shi-qi, ZHOU Rui-ping, . A Temporal Convolutional Knowledge Tracking Model Based on#br# Multiple Feature Extraction#br# [J]. Computer and Modernization, 2023, 0(07): 25-29. |
[5] | LIU Pei. Medical Insurance Fee Control System Based on Data Mining [J]. Computer and Modernization, 2023, 0(06): 89-94. |
[6] | ZHANG Yun, BAI Kai-feng, WANG Xing, CANG Tian, ZHOU Tong, DUAN Jin-wen, SU Han. Review of Electricity Theft Detection in Smart Grid Environment [J]. Computer and Modernization, 2023, 0(03): 60-65. |
[7] | WANG Shao-hua, OUYANG Hui-dan, SUN Dan, WANG Kang, WU Hong-ping, ZHONG Xun, CHU Xing-ping, YANG Song-tao. Association Rule Mining of Undergraduate Physical Test Items Based on Apriori Algorithm [J]. Computer and Modernization, 2023, 0(03): 66-70. |
[8] | SHI Zhi-wei, WU Zhi-feng, ZHANG Zhe. Stock Volatility Prediction of LightGBM-GRU Model under Corrective Learning Strategy [J]. Computer and Modernization, 2023, 0(01): 95-102. |
[9] | SONG Xiao-li, ZHANG Yong-bo, ZHANG Pei-ying. Anomaly Detection of Student Consumption Data Based on Semi-supervised Learning [J]. Computer and Modernization, 2022, 0(12): 13-17. |
[10] | GUAN Yun-peng, LIU Yu-long. Categorical Data Clustering Based on Extraction of Associations from Co-association Matrix [J]. Computer and Modernization, 2022, 0(11): 1-8. |
[11] | WANG Pan-hong, ZHU Chang-ming. Multi-label Image Classification Method Combined CNN and Interactive Features [J]. Computer and Modernization, 2022, 0(09): 85-92. |
[12] | DUAN Gui-qin, ZOU Chen-song. Occupational Competence Evaluation Model Based on Affinity Propagation Clustering [J]. Computer and Modernization, 2022, 0(05): 21-27. |
[13] | LENG Tao , . A Survey of Encrypted Traffic Classification Based on Deep Learning [J]. Computer and Modernization, 2021, 0(08): 112-120. |
[14] | DENG Zi-yun , . A Screening Method of Machine Learning Model for Auxiliary Diagnosis [J]. Computer and Modernization, 2021, 0(03): 88-93. |
[15] | YANG Lin, BAI Zhao, KOU Yong-gang. Analysis of Airline Customer Churn by Random Forest Algorithm Based on RFM Model [J]. Computer and Modernization, 2021, 0(01): 100-104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||